

Department of Professional Studies

ROBOTICS

COURSE SYLLABUS

COURSE DETAILS		
Type of study programme	Professional study - 180 ECTS	
Study programme	POWER ENGINEERING	
Course title	Robotics	
Course code	SEN033	
ECTS (Number of credits allocated)	5	
Course status	Core	
Year of study	Third	
Semester	Fifth (fall)	
Course Web site	http://www.oss.unist.hr/	
	Lectures	30
Total lesson hours per semester	Practices	
	Laboratory exercises & practical demonstration	30
Prerequisite(s)	None	
Lecturer(s)	Department of Electrical Engineering faculty: Predrag Đukić, Ph.D., College professor,	
Language of instruction	Croatian, English	

COURSE DESCRIPTION		
Course Objectives:	 understanding basic laws and phenomena in the area of robotics, conducting experiments in laboratory and industrial environment. 	
	explain fundamental physical and technical base of robotic systems,	
Learning outcomes	2. describe basic laws and phenomena that define behaviour of robotic systems,	
On successful completion of this	 create analytical, design and development solutions for components, devices and equipment of robotic systems, 	
course, student should be able to:	4. conduct experiments and measurements in laboratory and on real components, devices and equipment of robotic systems,	
	5. interpret the acquired data and results of experiments,	
	6. describe development and application of robotic systems	
Course content	Elements of interface between mechanical and electric/electronic components and devices Sensors and actuators). Circuits for supply/actuation of electromechanical actuators. Circuits for data conditioning of electromechanical sensors, AD-DA conversion. Sensors of physical values. Robotic vision, navigation and decision making	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes			
Activity	Student workload ECTS credits	Learning outcomes	
Lectures	30 hours/ 1 ECTS	1,2,3,4,5,6	
Laboratory work	30 hours/ 1 ECTS	3,4,5	
Preparation, laboratory mid-term exam	30 hours/ 1 ECTS	3,4,5	
Self-study	45 hours/ 1.5 ECTS	1,2,3,4,5,6	
Office hours and final exam	15 hours/ 0.5 ECTS	1,2,3,4,5,6	
TOTAL:	150 hours / 5 ECTS	1,2,3,4,5,6	

CONTINUOUS ASSESSMENT			
Continuous testing indicators	Performance A _i (%)	Grade ratio $k_{\rm i}(\%)$	
Class attendance and participation	70 - 100	5	
Laboratory work	100	10	
Laboratory mid-term exam	50-100	30	
First mid-term exam	50-100	15	
Second mid-term exam	50-100	15	
Third mid-term exam	50-100	15	

FINAL ASSESSMENT			
Testing indicators – final exam (first and second exam term)	Performance $A_{\mathbf{i}}(\%)$	Grade ratio $k_{\rm i}(\%)$	
Practical exam (written)	50 - 100	40	
Theoretical exam (written and/or oral)	50 - 100	50	
Previous activities (include all continuous testing indicators)	50 - 100	10	
Testing indicators – makeup exam (third and fourth exam term)	Performance $A_{\mathbf{i}}(\%)$	Grade ratio $k_{\rm i}(\%)$	
Practical exam (written)	50 - 100	50	
Theoretical exam (written and/or oral)	50 - 100	50	

PERFORMANCE AND GRADE			
Percentage	Criteria	Grade	
50% - 61%	basic criteria met	sufficient (2)	
62% - 74%	average performance with some errors	good (3)	
75% - 87%	above average performance with minor errors	very good (4)	
88% - 100%	outstanding performance	outstanding (5)	

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students. (https://moodle.oss.unist.hr/).