

AUTOMATED CONTROL SYSTEMS

COURSE SYLLABUS

COURSE DETAILS		
Type of study programme	Professional study - 180 ECTS	
Study programme	POWER ENGINEERING	
Course title	Automated Control Systems	
Course code	SEN019	
ECTS (Number of credits allocated)	5	
Course status	Core	
Year of study	Second	
Semester	Third (fall)	
Course Web site	http://www.oss.unist.hr/	
Total lesson hours per semester	Lectures	30
	Practices	15
	Laboratory exercises & practical demonstration	15
Prerequisite(s)	None	
Lecturer(s)	Department of Electrical Engineering faculty: Predrag Đukić, Ph.D., College professor	
Language of instruction	Croatian, English	

COURSE DESCRIPTION		
Course Objectives:	 understanding basic laws and phenomena in the area of Control systems theory and practice, theoretical and practical preparation of students to acquire and apply knowledge and skills in professional and specialist courses (mechatronics, hydraulics and pneumatics), conducting experiments in laboratory and industrial environment. 	
Learning outcomes On successful completion of this course, student should be able to:	 explain fundamental physical and technical base of Control systems, describe basic laws and phenomena that define behaviour of automated control systems, analyse various premises, approaches, procedures and results related to automated control, create analytical, design and development solutions for components, devices and equipment of automated control systems, conduct experiments and measurements in laboratory and on real components, devices and equipment of automated control systems, interpret the acquired data and measured results, describe development and application of automated control systems, take part in team work and be able to independently present various professional materials. 	
Course content	Introduction to dynamic systems. Description of dynamic systems using math equations (Laplas transform), solving and prediction of dynamic system behaviour. Stability criteria, steady state and transient errors. Errors as consequence of system parameters. Compensation and stabilisation of open and closed loop feedback systems. Use of commercial program packages in automated control systems (Matlab and Simulink)	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes		
Activity	Student workload ECTS credits	Learning outcomes
Lectures	30 hours/ 1 ECTS	1,2,3,4,5,6,7,8
Practicals	15 hours/ 0.5 ECTS	4,5,6,8
Laboratory work	15 hours/ 0.5 ECTS	4,5,6,8
Preparation, laboratory mid-term exam	30 hours/ 1 ECTS	4,5,6,8
Self-study	45 hours/ 1.5 ECTS	1,2,3,4,5,6,7,8
Office hours and final exam	15 hours/ 0.5 ECTS	1,2,3,4,5,6,7,8
TOTAL:	150 hours / 5 ECTS	1,2,3,4,5,6,7,8

CONTINUOUS ASSESSMENT			
Continuous testing indicators	Performance A _i (%)	Grade ratio $k_{\rm i}(\%)$	
Class attendance and participation	70 - 100	0,1	
Laboratory work	100	0,25	
Laboratory mid-term exam	50-100	0,25	
First mid-term exam	50-100	0,15	
Second mid-term exam	50-100	0,15	
Third mid-term exam	50-100	0,15	

FINAL ASSESSMENT			
Testing indicators – final exam (first and second exam term)	Performance $A_{f i}(\%)$	Grade ratio $k_{\rm i}(\%)$	
Practical exam (written)	50 - 100	40	
Theoretical exam (written and/or oral)	50 - 100	50	
Previous activities (include all continuous testing indicators)	50 - 100	10	
Testing indicators – makeup exam (third and fourth exam term)	Performance $A_{\mathbf{i}}(\%)$	Grade ratio $k_{\rm i}(\%)$	
Practical exam (written)	50 - 100	50	
Theoretical exam (written and/or oral)	50 - 100	50	

PERFORMANCE AND GRADE		
Percentage	Criteria	Grade
50% - 61%	basic criteria met	sufficient (2)
62% - 74%	average performance with some errors	good (3)
75% - 87%	above average performance with minor errors	very good (4)
88% - 100%	outstanding performance	outstanding (5)

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students. http://moodle.oss.unist.hr/