

University of Split

Department of Professional Studies

FUNDAMENTALS OF MECHATRONICS

COURSE SYLLABUS

COURSE DETAILS		
<i>Type of study</i> <i>programme</i>	Professional study - 180 ECTS	
Study programme	CONSTRUCTION MECHANICAL ENGINEERING	
Course title	FUNDAMENTALS OF MECHATRONICS	
Course code	SKS031	
ECTS (Number of credits allocated)	5	
Course status	Core	
Year of study	Third	
Semester	Fifth (fall)	
Course Web site	http://www.oss.unist.hr/	
Total lesson hours per semester	Lectures	30
	Practices	00
	Laboratory exercises & practical demonstration	30
Prerequisite(s)	None	
Lecturer(s)	Department of Electrical Engineering faculty: Predrag Đukić, Ph.D., College professor,	
Language of instruction	Croatian, English	

COURSE DESCRIPTION		
Course Objectives:	 understanding basic laws and phenomena in the area of Mechatronics- energy transformation in sensors and actuators: Electrodynamic, piezoelectric, electrostatic and magnetostrictive theoretical and practical preparation of students to acquire and apply knowledge and skills in mechatronics Conducting experiments in laboratory and industrial environment 	
	1. explain fundamental physical and technical base of Mechatronic systems,	
	2. describe basic laws and phenomena that define behaviour of mechatronic systems,	
Learning outcomes	3. analyse various premises, approaches procedures and results related to mechatronic systems,	
On successful completion of this	4. Create analytical, design and development solutions for components, devices and equipment of mechatronic systems,	
course, student should be able to:	5. conduct experiments and measurements in laboratory and on real components, devices and equipment of control systems,	
	6. interprete acquired data and measured results,	
	7. describe development and application of mechatronic systems	
	8. take a part in team work and be able to independently present various professional materials	
Course content	Elements of interface between mechanical and electric/electronic components and devices. Circuits for supply/actuation of electromechanical actuators (content adjusted for Mech. Eng. Students) Circuits for data conditioning of electromechanical sensors, AD-DA conversion (content adjusted for Mech. Eng. Students) Sensors of physical values.	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes		
Activity	Student workload ECTS credits	Learning outcomes
Lectures	30 hours/ 1 ECTS	1,2,3,4,5,6,7,8
Practicals	00 hours/ 0 ECTS	
Laboratory work	30 hours/ 1 ECTS	4,5,6,8
Preparation, laboratory mid-term exam	15 hours/ 0,5 ECTS	4,5,6,8
Practical demonstration	15 hours/ 0,5 ECTS	
Three mid-term exams (preparation and delivery)		
Self-study	45 hours/ 1,5 ECTS	1,2,3,4,5,6,7,8
Office hours and final exam	15 hours/ 0,5 ECTS	
TOTAL:	150 hours / 5 ECTS	1,2,3,4,5,6,7,8

CONTINUOUS ASSESSMENT			
Continuous testing indicators	Performance A _i (%)	Grade ratio k _i (%)	
Class attendance and participation	70 - 100	0,1	
Laboratory work	100	0,25	
Laboratory mid-term exam	50-100	0,25	
First mid-term exam	50-100	0,15	
Second mid-term exam	50-100	0,15	
Third mid-term exam	50-100	0,15	

FINAL ASSESSMENT			
Testing indicators – final exam (first and second exam term)	Performance A _i (%)	Grade ratio k _i (%)	
Practical exam (written)	50 - 100	40	
Theoretical exam (written and/or oral)	50 - 100	50	
Previous activities (include all continuous testing indicators)	50 - 100	10	
Testing indicators – makeup exam (third and fourth exam term)	Performance A _i (%)	Grade ratio k _i (%)	
Practical exam (written)	50 - 100	50	
Theoretical exam (written and/or oral)	50 - 100	50	

PERFORMANCE AND GRADE			
Percentage	Criteria	Grade	
50% - 61%	basic criteria met	sufficient (2)	
62% - 74%	average performance with some errors	good (3)	
75% - 87%	above average performance with minor errors	very good (4)	
88% - 100%	outstanding performance	outstanding (5)	

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students.