

University of Split

Department of Professional Studies

TECHNICAL THERMODYNAMICS

COURSE SYLLABUS

COURSE DETAILS		
Type of study programme	Professional study - 180 ECTS	
Study programme	MECHANICAL ENGINEERING	
Course title	Technical Thermodynamics	
Course code	SKS017	
ECTS (Number of credits allocated)	5	
Course status	Core	
Year of study	Second	
Semester	Third (fall)	
Course Web site	http://www.oss.unist.hr/	
	Lectures	30
Total lesson hours per semester	Practicals	30
	Laboratory exercises & practical demonstration	0
Prerequisite(s)	None	
Lecturer(s)	Department of Mechanical Engineering: Zlatko Jankoski, Ph.D., College professor	
Language of instruction	Croatian, English	

COURSE DESCRIPTION		
Course Objectives:	 understanding basic laws, principles and phenomena in the area of technical thermodynamics to solve simplified examples of thermodynamic processes theoretical and practical preparation enabling students to apply the acquired knowledge and skills in professional and specialist courses. 	
Learning outcomes On successful completion of this course, student should be able to:	 define basic terms, values and laws in the areas of first and second law of thermodynamics, steam and steam power cycles, heat transfer and thermodynamics of moist air, describe methods of implementing thermodynamic laws and phenomena while analysing the operational parameters of simple thermodynamic problems, systems and machines, practically apply thermodynamic tables and diagrams, and equations that define the associated laws calculate and optimise thermodynamic parameters of thermodynamic problems, systems and machines, explain the correlation between different thermodynamic operational parameters, select engineering approach to problem solving based on the acquired physics and mathematical knowledge. 	
Course content	Introduction: Basic concepts of thermodynamics. Fundamental terms. Physical values. Measurement of thermodynamic parameters. Zeroth law of thermodynamics. First Law of Thermodynamics: Energy of a system. Specific heat. Work and power. Pressure-volume diagram. First law of thermodynamics. Equation of state. Thermodynamic processes of ideal gases. Compressor and technical work. Enthalpy. Expansion and contraction of matter. Second Law of Thermodynamics: Basic concept of thermodynamic cycles. Counter clockwise thermodynamic cycle. Clockwise thermodynamic cycle. Typical thermodynamic cycle (Carnot, Joule, Bryton, Otto, Diesel). Entropy. Second law of thermodynamics. Temperature-entropy diagram. Gas mixture. Steam and Steam Power Cycles: Three states of the matter. Steam diagram. Steam tables. Phase change. General steam power cycle. Simple steam cycles (Carnot, Rankine). Improved steam power cycles. Refrigeration cycle. Ideal and real refrigeration cycle. Heat pump cycle. Heat Transfer: Principles of heat transfer. Heat conduction. Heat conduction through multilayers wall. Heat convection. Heat radiation. Heat exchangers. Types of heat exchangers. Applications of heat exchangers. Moist Air: Properties of moist air. Mollier diagram (enthalpy-entropy). Heating of moist air. Cooling of moist air. Mixing of air streams. Mixing of water and moist air. Drying of materials. Moist measurements.	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes			
Activity	Student workload ECTS credits	Learning outcomes	
Lectures	30 hours / 1 ECTS	1,2,5,6	
Practicals	30 hours / 1 ECTS	3,4,5,6	
Three mid-term exams (preparation and delivery)	51 hours / 1,7 ECTS	1,2,3,4,5,6	
Self-study	30 hours / 1 ECTS	1,2,3,4,5,6	
Office hours and final exam	9 hours / 0,3 ECTS	1,2,3,4,5,6	
TOTAL:	150 hours / 5 ECTS	1,2,3,4,5,6	

CONTINUOUS ASSESSMENT		
Continuous testing indicators	Performance A _i (%)	Grade ratio k _i (%)
First mid-term exam	50-100	30
Second mid-term exam	50-100	35
Third mid-term exam	50-100	35

FINAL ASSESSMENT			
Testing indicators – final exam (first and second exam term)	Performance A _i (%)	Grade ratio k _i (%)	
Practical exam (written)	50 - 100	50	
Theoretical exam (written and/or oral)	50 - 100	40	
Previous activities (include all continuous testing indicators)	70 - 100	10	
Testing indicators – makeup exam (third and fourth exam term)	Performance A _i (%)	Grade ratio k _i (%)	
Practical exam (written)	50 - 100	50	
Theoretical exam (written and/or oral)	50 - 100	50	
Previous activities (include all continuous testing indicators)	70 - 100	10	

	PERFORMANCE AND GRADE		
Percentage	Criteria	Grade	
50% - 61%	basic criteria met	sufficient (2)	
62% - 74%	average performance with some errors	good (3)	
75% - 87%	above average performance with minor errors	very good (4)	
88% - 100%	outstanding performance	outstanding (5)	

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students.