
Course syllabus Engineering Mechanics - Dynamics

COURSE DETAILS		
Type of study programme	Undergraduate professional study programme- 180 ECTS	
Study programme	MECHANICAL ENGINEERING	
Course title	Engineering Mechanics - Dynamics	
Course code	SKS010	
ECTS (Number of credits allocated)	7	
Course status	Core	
Year of study	First	
Course Web site	https://moodle.oss.unist.hr/course/category.php?id=21	
Total lesson hours per semester	Lectures	45
	Auditory exercises	45
Prerequisite(s)	None	
Lecturer(s)	Department of Mechanical Engineering: Ado Matoković, Ph.D., college professor,	

COURSE DESCRIPTION		
Course Objectives:	• Understanding basic laws and principles of plane kinematics and kinetics of particle and rigid body.	
Learning outcomes	1. define basic kinematic quantities of rectilinear and curvilinear motion of particle such as: position, displacement, velocity and acceleration,	
On successful completion of this course, student should be able to:	 describe and understand plane kinematics of rigid bodies, explain basic terms in kinetics of particles: Newton's second law, work and kinetic energy, impulse and momentum, gravitational and elastic potential energy discuss direct and oblique central impact determine moments and products of inertia of a mass, explain plane kinetics of rigid bodies, analyse and comprehend free undamped and damped vibrations 	
Course content	Introduction into Engineering Mechanics-Dynamics. Basic quantities and units. Newton's laws of motion and law of gravitation. Kinematics of particle. Rectilinear motion and basic kinematic quantities: position, displacement, velocity and acceleration. Special cases of rectilinear motion of particle: motion with constant velocity and motion with constant acceleration. Dependent rectilinear motions. Curvilinear motion of particle: position vector, velocity and acceleration. Free flight of a projectile. Tangential and normal components of acceleration. Radial and transvers components of velocity and acceleration., Kinetics of particles: force and acceleration. Newton's second law. D'Alembert's principle - dynamic equilibrium. Definition of work, kinetic energy and power. Work of a gravitational force. Work of a spring force. Principle of work and energy. Potential energy: gravitational and elastic. Impulse and momentum. Principle of impulse and momentum. Angular impulse and angular momentum. Impact: direct central impact; oblique central impact. Plane kinematics of rigid bodies. Types of plane motion of rigid bodies: translation, rotation, general plane motion. Velocity and acceleration centre. Accelerations in different reference frames. Interpretations for Coriolis acceleration. Plane kinetics of rigid bodies. Mass moments of inertia, parallel-axis theorem, calculation mass moments of inertia for composite bodies. Work and energy. Kinetic energy of a rigid body in plane motion. Principle of work and energy. Conservation of energy. Impulse and momentum. Principle of impulse and momentum.	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes			
Activity	Student workload ECTS credits	Learning outcomes	
Lectures	45 hours / 1,5 ECTS	1,2,3,4,5,6,7	
Auditory exercises	45 hours / 1,5 ECTS	2,3,4,7	
Homework	12 hours / 0,4 ECTS	2,3,4,7	
Short tests	12 hours / 0,4 ECTS	2,3,4,7	
Self-study	96 hours / 3,2 ECTS	1,2,3,4,5,6,7,8	
TOTAL:	210 hours / 7 ECTS	1,2,3,4,5,6,7,8	

CONTINUOUS ASSESSMENT			
Continuous testing indicators	Performance A _i (%)	Grade ratio <i>k</i> i (%)	
Class attendance and participation	70 - 100	10	
Seminars	100	10	
Homework	0-100	10	
Short tests	0-100	10	
First mid-term exam	50-100	30	
Second mid-term exam	50-100	30	

FINAL ASSESSMENT			
Testing indicators – final exam (first and second exam term)	Performance Ai (%)	Grade ratio <i>k</i> i (%)	
Written exam	50 - 100	45	
Oral exam	50 - 100	45	
Seminars	100	10	
Testing indicators – makeup exam (third and fourth exam term)	Performance A _i (%)	Grade ratio <i>k</i> i (%)	
Written exam	50 - 100	45	
Oral exam	50 - 100	45	
Seminars	100	10	

PERFORMANCE AND GRADE			
Percentage	Criteria	Grade	
50% - 61%	basic criteria met	sufficient (2)	
62% - 74%	average performance with some errors	good (3)	
75% - 87%	above average performance with minor errors	very good (4)	
88% - 100%	outstanding performance	outstanding (5)	

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students.