Course syllabus Programming Methods and Abstractions

CO	IDCE	יתרי	
UU	UNSE		IAILS

Type of study programme	Undergraduate professional study programme- 180 ECTS	
Study programme	INFORMATION TECHNOLOGIES	
Course title	Programming Methods and Abstractions	
Course code	SIT109	
ECTS (Number of credits allocated)	6	
Course status	Core	
Year of study	First	
Course Web site	http://moodle.oss.unist.hr/	
Total lesson hours per	Lectures	45
semester	Practicals	0
	Laboratory exercises & practical demonstration	30
Prerequisite(s)	None	
Lecturer(s)	Department of Information Technologies: Ljiljana Despalatović, lecturer	

COURSE DESCRIPTION		
Course Objectives:	 understand fundamentals of programming (variables, iteration and recursion, conditional, functions), learn the C programming language: its syntax, standard library, idioms and patterns, learn the procedural and modular technique, learn to create algorithms. 	
Learning outcomes On successful completion of this course, student should be able to:	 define basic programming concepts: variables, types, functions, operators, pointers and structure, describe memory layout during program execution, design algorithms for basic programming problems; use compiler and linker, or IDE (Integrated Programming Environment), recognize idioms and patterns; find syntactic and semantic errors, implement algorithms in C, make test cases; estimate program complexity. 	
Course content	Introduction to procedural programming, introduction to C programming language. Algorithms, variables, types, functions, statements. Operators in C. Recursion. Pointers. Pointers and functions. Function pointers. Arrays. Dynamic allocation, working with memory. Strings. Preprocessor. Structures. Working with files. Variable lifetime and scope.	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes			
Activity	Student workload ECTS credits	Learning outcomes	
Lectures	45 hours / 1,5 ECTS	1,2,4,5,6	
Laboratory work	30 hours / 1 ECTS	2,3,5,6	
Two mid-term exams(preparation and delivery)	45 hours / 1.5 ECTS	2,3,5,6	
Self-study	45 hours / 1.5 ECTS	1,2,3,4,5,6	
Office hours and final exam	15 hours / 0.5 ECTS	1,2,3,4,5,6	
TOTAL:	180 hours / 6 ECTS	1,2,3,4,5,6	

CONTINUOUS ASSESSMENT			
Continuous testing indicators	Performance A _i (%)	Grade ratio <i>k</i> i (%)	
Class attendance and participation	50 - 100	10	
Laboratory work	100	10	
First mid-term exam	40-100	40	
Second mid-term exam	40-100	40	

FINAL ASSESSMENT

Testing indicators – final exam (first and second	Performance	Grade ratio
exam term)	$A_{ m i}$ (%)	<i>k</i> i (%)
Practical exam (written)	40 - 100	80
Previous activities	40 100	20
(include all continuous testing indicators)	40 – 100	20
Testing indicators – makeup exam (third and	Performance	Grade ratio
fourth exam term)	A_{i} (%)	k i (%)
Practical exam (written)	40 - 100	80
Theoretical exam (written and/or oral)	40 - 100	20

PERFORMANCE AND GRADE		
Percentage	Criteria	Grade

40% - 54%	basic criteria met	sufficient (2)
55% - 69%	average performance with some errors	good (3)
70% - 84%	above average performance with minor errors	very good (4)
85% - 100%	outstanding performance	outstanding (5)

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students.