Course syllabus Digital and Microprocessor Technology

COURSE DETAILS			
Type of study programme	Undergraduate professional study programme- 180 ECTS		
Study programme	INFORMATION TECHNOLOGIES		
Course title	Digital and Microprocessor Technology		
Course code	SIT104		
ECTS (Number of credits allocated)	6		
Course status	Core		
Year of study	First		
Course Web site	https://moodle.oss.unist.hr/course/category.php?id=21		
Total lesson hours per	Lectures	45	
semester	Practicals	15	
	Laboratory exercises & practical demonstration	30	
Prerequisite(s)	None		
Lecturer(s)	Department of Information technologies: Ivan Kedžo, PhD, lecturer		

COURSE DESCRIPTION		
Course Objectives:	 understanding basic knowledge of Boolean algebra and automaton theory as a core of computer science theoretical and practical knowledge about synthesis of combinational and sequential circuits, and programmable structures. 	
Learning outcomes On successful completion of this course, student should be able to:	 define basic logical circuits, Boolean algebra, minimization methods, methods for writing Boolean functions, combinational and sequential circuits, flip-flops, digital automaton, programmable structures describe operation methods of combinational and sequential circuits, similarities and differences of writing the Boolean functions and minimizations select appropriate methods for realization and circuit minimization pattern recognition for specific circuit realization and error discovery during circuit design process synthesis of appropriate combinational and sequential logic circuits 	
Course content	Representation of information in digital systems. Numerical systems. Modulo arithmetic. Elementary logic gates. Boolean algebra. Boolean functions. Algebraic normal forms. Complete set of functions. Minimization and normal forms. Minimization procedures and implementation of NAND and NOR gates. Medium-scale integrated combinational circuits. Realization of Boolean functions with multiplexer. Realization of Boolean functions with demultiplexer. Multiplexer – demultiplexer (MD) structure. Programmable logic structures. Sequential logic circuits. Discrete time circuit operation. Flip-flop circuit. Synthesis of general flip-flops. Complex circuits with flip-flops. Digital automaton. Abstract model of digital automata. Classification of automata. Equivalence of automata. Structural synthesis of automata. Automata and algorithms. The basic structure of microcomputers. Computer memory. Input and output computer circuits.	

CONSTRUCTIVE ALIGNMENT – Learning outcomes, teaching and assessment methods

Alignment of students activities with learning outcomes			
Activity	Student workload ECTS credits	Learning outcomes	
Lectures	45 hours / 1,5 ECTS	1,2,5,6	
Practicals	15 hours / 0,5 ECTS	3,4	
Laboratory work	30 hours / 1 ECTS	3,4	
Seminar	30 hours / 1 ECTS	3,4,5	
Self-study	78 hours / 2,6 ECTS	1,2,3,4,5,6	
Office hours and final exam	12 hours / 0,4 ECTS	1,2,4,5,6	
TOTAL:	210 hours / 7 ECTS	1,2,3,4,5,6	

CONTINUOUS ASSESSMENT			
Continuous testing indicators	Performance A _i (%)	Grade ratio <i>k</i> i (%)	
Class attendance and participation	70 - 100	0	
Laboratory work	100	0	

FINAL ASSESSMENT				
Testing indicators – final exam (first and second exam term)	Performance Ai (%)	Grade ratio <i>k</i> i (%)		
Practical exam (written and/or oral)	50 - 100	25		
Theoretical exam (written and/or oral)	50 - 100	75		
Previous activities (include all continuous testing indicators)	50 - 100	0		
Testing indicators – makeup exam (third and	Performance	Grade ratio		
fourth exam term)	$A_{ m i}$ (%)	k i (%)		
Practical exam (written and/or oral)	50 - 100	25		
Theoretical exam (written and/or oral)	50 - 100	75		

PERFORMANCE AND GRADE			
Percentage	Criteria	Grade	
50% - 61%	basic criteria met	sufficient (2)	
62% - 74%	average performance with some errors	good (3)	
75% - 89%	above average performance with minor errors	very good (4)	
90% - 100%	outstanding performance	outstanding (5)	

ADDITIONAL INFORMATION

Teaching materials for students (scripts, exercise collections, examples of solved exercises), teaching record, detailed course syllabus, application of e-learning, current information and all other data are available by MOODLE system to all students.